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Goal — Neural Iterative Closest Point (NICP) ——— NICP Analysis
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Neural Scalable Registration (NSR)

NSR provides robust reglstratlon in ~1 minute.

1) A new localized neural field
(Localized Vertex Descent, LoVD)

trained on a large MoCap dataset (AMASS).
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Problems
Lack ot generalization causes trivial misalighement.
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Covering all the challenges within a training set 1s hard.
NSR is ready to animate your NeRF or GS asset!
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2) At inference time, we fine-tune the backbone
with NICP, a new self-supervised task.
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3) The output is spatially refined with Chamfer

1: Learned Vertex Descent: A New Direction for 3D Human Model Fitting, Corona et al., ECCV 2020 2: AMASS: Archive of Motion Capture As Surface Shapes, Mahmood et al., ICCV 2019



